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SUMMARY

Confignrations, composed of a cone with a half-eircular cross-section mounted above or below a delta
wing of zero thickness with subsonic leading edges and placed in a supersonic flow, are studied using the
slender-body theory in order to determine their lift and drag- characteristics. These are compared to the
lift and drag of configurations composed of the same wing and a symmetrically disposed circular cone with
equal volume as the half-cone. The comparison is made to investigate whether it is possible to attain better
lift efficiency by placing the body on one side of the wing.

For configurations having a body diameter-wing span ratio larger than approximately 0,45, a disposition
of a half-cone on one side of the delta wing shows a drag reduction at a given lift, and therefore a higher
value of (CL, /CD)max. compared to the corresponding symmetrical combination. However, the high-wing com-
bination is preferable to the low-wing, since lower angles of incidence are needed to attain a certain Cp,

If the body diameter-wing span ratio is less than this value, the symmetrical system appears to be more
favourable. '

. dC
The lift curve slope Tol(‘-of the asymmetrical configurations studied is larger than that of thesymmetrical
configurations.

1. Imtroduction.

In order to improve theoretically possible lift and drag characteristics
of supersonic aircraft various investigations have been made (for example
see Fl], (21, [3]).

For the major part these approaches concerned an arrangement of wing
and body such that a favourable pressure interference effect could be ob-
tained, to increase lift and to decrease drag. For wing-body combinations
having wings with sonic or supersonic edges, a disposition with a body
lﬁnﬁierlﬁeith the wing appeared to be an efficient means of generating lift

2{, [3].

Also it is possible to reduce the drag at a given lift by indentations of
the fuselage at the wing station, as has been investigated by Ferri e.a.
[2], using the linear theory. '

Any possibility of generating lift has to be considered together with the
contingent drag that may result from it.

This finds expression in the lift-drag ratio, L /D. Using the linear
theory Ferri e.a. [2] showed that in the case of a delta wing with super-
sonic leading edges the L/D ratio may increase when mounting a suitably
selected double wedge underneath. The drag of the modified system appeared
to be lower than that of the delta wing alone at the same lift. In addition,
mounting the wedge means adding volume. An extension of this idea has
been investigated, making use of the linear theory, by Reyn and Clarke
[3], who considered an analogous configuration with a half-cone instead of
a wedge and who also gave attention to arrowhead wings. In their case
the wing leading edges were sonic. Reyn and Clarke compared the lift and
drag characteristics of various configurations, namely a high-wing and a low-
wing both carrying a half-cone, and a mid-wing with a full cone of the
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same volume as the half-cone. The maximum drag reduction found in [3

for a high arrowhead wing-cone configuration appeared to be 37% and 10%
as compared to the low-wing and mid-wing configurations, respectively.
In the case of the delta wing these percentages were 15% and 2%. The
results mentioned above may be expected, considering the fact that a body
underneath the wing will induce a positive pressure on its own surface and
on the undersurface of the wing. This results in a positive lift. The change
of the body by bringing the whole volume to one side of the wing however,
introduces an additional drag which may be considered as payment for the
lift increase. In the case studied in [2] and [3] a favourable effect on the
L /D ratio of a wing carrying a body underneath was found.

The question arises, whether such effect also remains present for wing-
body configurations having subsonic leading edges. Then the overpressure
at the undersurface of the wing ''leaks” around the leading edges, thereby
weakening the lift effect of the fuselage.

In the present paper the slender-body theory of Ward [4] is applied to
wing -body configurations consisting of a delta wing with a half-cone mounted
centrally underneath or above. The lift and drag characteristics are then
compared to those of the mid-wing configuration, with a full cone having
the same volume as the half-cone. An attached flow model is assumed.
The paper is an abstract of [7], to which is referred to for further details.

After [7] had been written, the work of Portnoy [5], where the flow
past a delta wing-half-cone combination with subsonic leading edges was
investigated using the linear theory, came to the attention of the authors.
Furthermore Portnoy treated the same problem in the framework of slender -
body theory in an as yet unpublished paper [6]

Since the latter followed a different treatment of the problem then used
in the present paper, yet obtained identical numerical results regarding
the lift-drag characteristics, both approaches may serve as independent
checks on the calculations. Moreover the present paper gives the comparison
of the various wing-cone configurations.

2. Statement of the problem.

A sketch of the configuration consisting of a delta wing and a half-cone
to be studied is given in fig.1l, where also the body axes x,y, z are

Fig.1: Sketch of the wing-body configuration
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indicated. The wing span at the base is 2b and the rootchord is 1; the
cone of radius R(1l) at the base, has a semi apex angle of é. This con-
figuration is placed in a uniform supersonic flow of velocity U. The velocity
vector lies in the xz plane and forms an angle ¢ with the z-axis, @ being
positive for a positive rotation about the y-axis. According to the slender-
body theory of Ward [4] the perturbation potential is given with respect to
the wind axes x, yy, %, having the same origin as the body axes and
with Oz parallel to the undisturbed flow. The perturbation potentialis
found to be given by

B(x,.y5,:2,) = &lz,)+ ¢'(x,.¥,:2,) (1)

where g(z,) is a given function of the cross=~sectional area distribution
S(z,) of the configuration, and of the Mach number M; ¢'(x,,y,;2,) Satisfies
the Laplace equation in the plane z, = constant with the boundary condition

op! ov
_ = U — (2)
vy 0z,

on the body contour, where ¥, is the outward normal on the contour in the
plane z, = constant.
In addition, at infinity ¢'(x,,y¥,;2z,) must behave like

U ds(z,) ‘
o'(x,.,5,2,) = a7 —— log 1, (3)
dz,,

¢ 2. 2.

where r = (x +y.)

The determination of the flow field past the configuration now involves
the solution of the Laplace equation, which fulfils the boundary condition
on the body eq. (2) and the condition at infinity eq. (3).

The problem thus stated will be transposed on body axes and split up
into two parts, the boundary conditions will be split up accordingly. We then
have

"I the problem due to the flow at zero incidence with the perturbation

potential ¢} (x,y; z);
II the problem due to the cross-flow at incidence o with the perturbation
potential v,(x,y; z).

The problems I and II will be solved in the cross-sectional plane z =

constant, called the { -plane given in fig.2, where

£ = x + iy | (4)

Problem I (@ = 0)
In this case the body axes and wind axes coincide.
For the boundary condition on the wing we take

—_ = 53.)

and on the body

og!
0 =U‘&d(zz—l, for |¢] = R, 0 <6 <X (5b)

or
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where 0 represents the polar angle.
At infinity we shall require

. U dS(z
i [o) - g =] =0 @

where r = (x2+y2)*.
Pyoblem II (@ # 0)
In this problem we take the boundary conditions on the wing surface

Opy

— = ~Ua (7a)
ox

and on the body

ov

[+ 4
— = - Ugcos g, (7b)
or

whereas at infinity we take

¥y = 0 ‘ ‘ (8)
Superposition of the perturbation potentials ¢!, and ¢, satisfying the stated
boundary conditions, yields the solution of the potential ¢'(x .y, ;z2,)
for the boundary conditions eqs. (2) and (3).
3. Conformal transformation of the (-plane..

To solve the stated problems, the {=-plane (fig.2) is mapped onto the

Y“
1 D
b C
/ R
—ooe—F E B A—wwo
R YITTTTITTTT 7777 X

Fig.2: The §-plane

T ~plane.

Since the configuration is symmetrical with respect to the xz-plane, only
one half will be considered.

First we transform to a n-plane (fig.3) by

n = log § (9)
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Fig.3: The 7 -plane
The contour in the n-plane is a polygon, which may be transformed bya

a Schwarz-Christoffel transformation onto the real axis of the T-plane, see
fig.4 Choosing B in 7 =8, Cin 7=1, DinT=Xand Ein T =0 we
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Fig.4: The 7 -plane

obtain with the Schwarz-Christoffel equation a conformal mapping of the
inner region of the contour in the n-plane onto the upper half 7-plane [7]
The transformation formula is given by

-(r-g)t+ {B(7-1)
74

n = log [('r -B)h(’r-l){]2 + log [ } :i-% log(B -1) (10)

L
whereas for X follows A = 187,
From eq. (10) the equation mapping the § ~plane onto the T-plane is found
to be

ooyt o - 3
% = _(3-1)'% [(""B)é + (.,._l)ﬂ [(T B) EB(T 1)} ] an
T
where B is given by
b _ Le-38h+a-38Y'] [6-38Y - {su-18M}) .

" [16-1%1]

Eq. (12) gives the relation between the body diameter-wing span ratio and
B- As a check, eq. (11) may be applied to the case of the wing alone. Then
in the limit the points B and C of fig.2 coincide in ¢ = 0, and eq. (11)
passes into
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C 1
$ =2 [’r('r--l)]E (13)

The behaviour at infinity of eq. (11) is of importance in the solution of
boundary value-problem I. For {—® eq. (11) becomes

a(pt-1)
T TEnd (e

Jiss

4. Solution of problem I (@ = 0).

Firstly we satisfy the boundary conditions eq. (5a) and eq. (5b) by placing
a source distribution on the contour of the body. Fig.5 shows a sketch of

Y)
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////////////////////////'///////'////// /

T- PLANE

Fig.5: Flow in a cross-section z=c=const. Problem I (a=0)

the flow pattern in the {-plane and the corresponding 7-plane. The body
contour corresponds to 1 < x' <, y' =0 in the 7-plane, where

T = x' +iy (15)
If
Ko = wo(x', ¥ + 1 (X', 3") = e (x,y) + 1 (3, ) (15a)

is the complex potential, we may write
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do, Ow, 0x' B¢, 0y’
.t e (16)

or ' or . 9y' or J

where r, 08 are polzir coordinates in the ¢ -~plane (see fig.5).

with &X' = 0, % - | 93| and cus (5b) and (11) there follows from eq. (16)

for the boundary conditions on the body in the 7-plane
aq X""é‘ﬁz
—(x',0) = UR B . . (17a)
3y’ x'(x' = 1)° (B=x")}

Elsewhere bn the real x'-axis is
dy,
— (x',0) =0 (17b)
ay'

The conditions (17a) and (17b) are satisfied by a source distribution of
strength '

R — - . (17c)
xt(x' = 1)} (3 ~x')F
on the real axis of the 7-plane for 1<x'<g.

The potential in the 7-plane then becomes

U . dR X! -3 B
T

B 1
U dRJ £-28 o gqd

v LY)=-R 37 — ! - +y' d§ 18)

e, (x,y") = - R &7 1 EE-1) (B-t) og [‘X E)+y ] (
and the velocities

B 1

) £-182 [x'~E

ﬁ(xt,yv)=[_’TR 3_55 : : | dt (19)

ax T EE-DIE-R (0 -E) ey
and

a B E 1 % '

sy -JIr R j 128 : Y& (20)

oy’ TE(E-1)2(B-8)* (x'-E)*+y'*

For the calculation of the lift and drag with the slender-body theory we
only need the potential and the normal velocity on the contour of the con-
figuration. The evaluation of the integrals (18) and (19) has been carried
out in detail in [7] In the present paper only the final results will be
given. We then' find
for x' <1

w (! = =
\pu,.\X '.0) 2 UR dz

dR[ (B=x")t+ (1)t (B-X')%+{B(1-X')}%J (21)
log log - R
2 pE+1

3¢o X:S,B%
— (x,0)= -UR &1 — "z | (22)
(1-x'§*

ox' XL g-x)

| i
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for 1<x'<B

~1) (gt
vo(x',0) = UR%EIi [log B-1) (B**1) -3 1ogx':', (23)

Dy
0 dR 1
'a;(X'JO)="%UR‘d_Z;; (24-)
and for x' >8
L 1
' ar [ e-prre-nt -+ {pee )
q>0(x,0)=2URa-i— log -3 log n (25)
2 Bz+1
1.1 3
?:9 lo-URd_R.l_ X' -2B - L 26
1 (X ’ ) - dz x' 1 1 1 2 ( )
ax (x' ~1)E(x' - B)

So far the potential and the velocities have been determined using the
boundary conditions on the configuration only.

Now we will check whether the condition at infinity given by eq. (6) is
satisfied.

The behaviour at infinity of the potential may be found from eq. (21)
for x'< 1 or from eq. (25) for x'>B. Using eq. (14) we find from eq. (21)
for x' —~ o from eq. (25) for x'—t+ @

4(3%-1)1%]
(8-1)

If this result is compared with eq. (6) a relation between q:O(x,y) and
\p'O(X, y) is obtained which is given by

Up dR
2R

Iz [1og x - log (27)

Wo(X: Y) =

4(8t-1)R
(g-1)?

The additional term dependent on z only does not alter the boundary con-
dition on the contour of the configuration.

U

viz) - g+ U R 4B
o)(%,7i2) = ¢ (x,y;2) +3 R G, log (28)

5. Solution of problem II (@ ¥ 0).

In order to solve this problem we add a uniform cross-flow with velocity
U« parallel to the x=-axis, by introducing the function ®u(x,y) defined by

Ou(x,7) = Ux x + %, Y) (29)

The boundary conditions given in egs. (7a), (7b) and (8) are then trans-
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formed to

ad,

ox

=0 (30a)

on the wing surface, and
a, '
—=0 (30Db)
ar

on the body.
At infinity we have

Qe = Uax , (31)

By transforming the problem to the 7-plane, the boundary conditions are
easily seen to be satisfied by a uniform flow parallel fo the x'-axis. A
sketch of the flow field in both planes is given in fig. 6.
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Fig.6: Flow in a cross-section =wc #cousi. Problem Il (et 0)
Let the complex potential be given by
1(7) = Qulx',3') + ig(x',y') = a7 (a>0) (32)
then the conjugate velocity in the {-plane is found to be given by
A (§)  dy,(7) ) {7()-1} {r()-8]
de dr : ¢ 7(t) --;.3*}

d
qt © (33)
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The value of a is found from the condition at infinity eq. (31) and using
eq. (14). Then follows

L
2.1

a=4RUQ’W (34)

The egs. (32), (33) and (34) enable us to find the velocity-components on
the contour of the configuration. This is done in |7]|. For the calculation of
the aerodynamic forces 1t suffices to know the real part Q. of the complex
potential x4 on the contour. The complex potential in the T-plane follows
from egs. (32) and {34), giving

Bt -1
1. (T) = 4R U« 5 T (35)
(B-1)2
Hence, on the real axis of the T-plane (I)“(x',y') becomes
b_g ’ _
¢ (x',0) =4RUa — x'. (36)
° (8-1)3

6. The aerodynamic forces.

The solutions of problems I and II will now be used to calculate lift and
dragof the delta wing -half -cone combination™; Lift and drag will be determined
for each of the two problems separately, the total lift and drag thenfollow
by superposition.

According to Ward [4] the 1atera1 force on the comb1nat1on is givenby

F

» +1F

P -——j [g(z) XYy 7], 1, AE (37)
z w

where F, ,wa are the components of the force in x,y, direction,

respectlvely and o is the density in the undlsturbed flow (lpU2 denotes the

dynamic pressure).
The contour .integral has to be taken around the contour C at the basezy
= 1. In the present case F 0 and the component F . represents the

/w‘
lift force L. L . .
If we consider firstly the case where a = 0 (then body axes ard windaxes
coincide), we obtain by substltutlon of eq. (28),

/2 ) 5

ae 4
PR i [tan 6 J (po)ye cosOdE+ j. {eo)cp dy { (eo)e dy] B9
pr tand 0 Z._\l

L

where 6 is the seml-apex angle of the cone (for z =1 is %i—{ = R = tan ).

On the cone BC the potential (y,)gc is given by eq. (23) and from eq. (11)
the relation between 8 and x' is found to be

N

1 (x'~1) )
= : -x' 1.3~ :
cos 0 = ——3 ——=[2(B-x') + (2x' -~ 1)§’ | (39)
(-1 x¥ -
It may be remarked, that the solutions of problemsIand Il may also be used to calculate the lift and drag of wing-body
combinations with curved leading edges, but havinga wing span-body diameterrationot varying in the flow direction.
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On the wing CD and DE the potentials (¢y)cp, (wolpe follow from eq. (21),
so that the last two integrals of eq. (38) may be evaluated using eq. (11).

Next the 1ift due to an angle of incicence o may be found in the same
way by substituting ¢, from eqs. (29) and (36) in eq. (37). We may then
derive the 1lift curve slope

/2 b
1 dL _ 4
_— m —— + -
TS da T av [tané J (q)“)sc cos 6d6 J ((I)Q)CD dy
2 . .
b 0 tanb ’
-5 (@) e dyj' - 7tan2é (40)
9 z=1

The slender-body expression for the wave drag at zero incidence of the
configuration is found from the equation for a general body with length 1
[4], thus giving

1 1 1
DO‘=0 - 1 1 " 1 1
= - 5 S'(z)S"(t) log | z-t]| dz dt+=S'(1) \ S"(z)log(l-z)dz
1pu? i 4 g
" (M2-1 1
1 2 » Oop!
-5 {S'(l)} 1og—2— - 52 ,:5 @} 579 dsJ (41)
c z=1

where s is the distance along the contour. :
Evaluating the first two integrals in eq. (41), and making use of egs.
(5b) and (28), yields the wave drag for the configuration at zero incidencc

3
D _ (B-1)2
a02=gtan46 log — -3 -
%PU 2(M~~-1)2 (B2 ~1)tané
2 tan%s [ 3"
- j (@0ge de} (42)
U 1] z=1

The integral in eq. (42) may be evaluated using eq. (23) for (o) and
eq. (39) to give BC

(43)

[N

1 1 4
Dyso - . (B-1)F (BF+1)
5 %% tan“ 6 | log n 5 T -
1pU 8B(B* -1)(M“-1)*tans
2

Let C, = L/3PU A, C =D/ pU%A, where A is the wing area, be the
lift and drag coefficient, respectively, then according to the slender-body
theory th following relation may be found [4]:

Cp = (Cplgag * {a~@lg =0} G (44)

or, since C; is a linear function of a, for the polar curve is obtained

1 9

. 2 &

CD = (CD )0(=-0 + E{CL —(CL )a_o} (45)
do B

7. Comparison of the vavious configuvations.

The high-wing and low-wing configuration may be compared to the con-
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figuration having a delta wing with a symmetrically disposed full one. A
comparison will be made of the aerodynamic forces of configurations with
equal body volume and equal wing area. Then the following relation exists
between apex angle of the half-cone and that of the full cone

tan®y = 1 tan®s (46)
where v is the semi apex angle of the full cone.
The lift and drag of the symmetrical configuration is obtained from [4]

Substituting eq. (46) there follows for the lift curve slope of the mid-wing
combination

9 1
dCp _ b _1 [tané 1 /tané
do = 2mtand o [1 z ( b > *3 ( b ) J (47)

and for the wave drag coefficient at zero incidence

3
t o 22
3, tan
(Cp) _, = 2 tan®o log i -3 (48)
az0 2 b (M®-1)*tan 6
The expression for the polar curve is
1 2
Cp = (Cplyop ¥ ;d—C_L - Gy (49)
do

For the comparison the maximum value of CL/Cp is of interest. From
eq. (45) there follows

1
A(chf
2
d
(CL/CD)max - . 2 B (50)
(CL)yqg
(Cpla=o -_Z—EL—L_
da
The value of C; and Cp at which (CL/CD Jpaxy OCCUrS are called the

optimum values, (Cy, )op[. and (CD)OP[.

Eq. (45) shows that the polar curves of the low-wing and the high-wing
systems coincide. In order to obtain a certain value of C; however, the
incidence needed for a high-wing combination is much lower than for the
corresponding low-wing combinaticen, Therefore the high-wing is more
interesting., A qualitative sketch of the polar curves of the asymmetrical
and symmetrical configurations is shown in fig,7. The value of C; whereby
both systems have equal lift and drag (the intersection point of the polar
curves) is called the critical value, ((?,,)m[ .. This value follows by equating

eqs. (45) and (49).
Since the effect of Mach number is equally present in (Cp)g=g of both

configurations, (Cy )., is independent of the Mach number.

8. Numerical results.

The computations of C;; and Cp were carried out on the TR-4 computer
of the Technological University Delft.
The results are illustrated in figs 8 to 12.
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CL asym.configuration
symm.configuration
C
(tL )opt.a.c. _____________
{ CL)opt.s,c. ——————————
(CL) critp ———————

Fig, 7t Diagram of polar curves

Fig.8 shows the value of C| of the high~wing combination at zero in=
cidence. Also shown is (CL) .y, 5 it is seen that the polar curves have

an intersection point if (tané/b) < 0.5, thus for bodyv diameters which are
relatively small with vespect to the wing span. For (tané/b) > 0.5, so for
thicker bodies, the asymmetrical configuration shows at all value of C, a
lower value of Cp compured with the syvmmetricul syvstem.

It appears that g—%of the asymmetrical configuration is higher than that
of the corresponding symmetrical one. The ratio of the two is given as
a function of the body diameter-wing span ratio in fig. 9.

Fig.10 and 11 show C; /Cp, as a function of C| for various apexangles
of cone and delta wing and for M = 1.2 and 2.0.

At small values of m = b(M~ ~ 1}* the ratio of the semi apex angle of
the wing to the Mach angle is small. Then the slender-body theory is most
accurate. At values of (tané/b) below 0.47 the C,/Cp of the symmetrical
system is higher than that. of the corresponding asymmetrical system,
whereas the opposite occurs at values of (tané/b) above 0.47. This means
that if the cone angle is large compared to the delta wing apex angle the
influence of placing the body on the lower side of the wing is favourable,
The cffect of the Mach number on the results is very small, as may be
expected, since in the slender-body theory only Cp contains a weak de-~
pendence on the Mach number.

Rather then going into details about the values of Cy/Cp at arbitrary
values of Cp, it might be interesting to compare the maximum values of
CL/Cp. It must be noted however, that(Cy / Cp ) pax of alltypes of configurations
is attained at different values of C,. If § is taken smaller, (C|/Cp)y.x

appears at lower values of Cp(figs 10, 11). Also evident in figs,10 and
11 is the fairly flat maximum in the curves at large values of 6 as com-
pared to the very small region of C; where the highest values of C /Cp
are reached to small cone angles. In the case of the high-wing system
(Cy /CD)max appears at an angle of incidence close to zero,
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CL
tan6 20 - |
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\ tan 8 d':O)
JA
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0.2 - 04 0.6 0.8 1.0
tan 6
-
b
. Fig.8: (CL)Crit and (CL)a=Oas a function of diameter - span ratio [—"12—6‘
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Fig,9: Comparison between lift curve slopes of the symm. and asymm. configurations
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Fig.12: Comparison between (—L—

Cp )max
Fig.12 shows the ratio of C; /Cp)
to that of the symmetrical configuration as a function of (tané/b). It may

be seen that the value of (tan §/b) of approximately 0.45 isof importance
to decide which configuration provides the best (C{ /Cp)

of the symm, and asymm. configurations

max ©Of the asymmetrical configuration

max.

The effect of Mach number on (C, /CD)max at a constant value of 6 is

shown in this figure to be weak,

9. Discussion.

It is well-known that the numerical accuracy of the slender bodytheory
is not very great, except possibly for small cone angles and low super-
sonic Mach numbers. However, other methods to achieve quantitative results
for the configurations studied in this paper would be considerably more
complicated. Moreover a comparison of the various configurations on the
basis of slender body theory would possibly still show the trend in their
relative behaviour. _

In the present investigation the effect of base drag, skin friction and
flow separation has been ignored. For small cone angles and equal base
area the base drag might be expected to be roughly the same for the con=-
figurations studied, so that in this respect a comparative investigation would
still lead to reasonable conclusions,

Since, especially for small cone angles, the wetted surface for the wing-
cone configurations studied is almost equal, the effect of skin friction would
probably cause primarily a uniform translation of the polar curves to
higher values of Cp. The critical and optimum values do not change due
to such a shift, and the drag reductions remain unchanged. The relative
drag reductions will decrease however, especially for lower values of Cp,
and therefore for lower values of Cp . It is obvious that the influence of
skin friction on the values of C. /Cp is very large.

Leading edge separation will certainly occur at higher angles of o. In
this respect the high-wing combination is in favour on the corresponding
low- and mid-wing combinations, sine the same C; is reached at
values of «a,
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