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SUMMARY 

Configurations, composed of a cone with a ha.Lf-air~cular cross-section mounted above or below a delta 
wing of zero thickness with subsonic leading edges and placed in a supersonic flow, are studied using the 
slender-body theory in order to determine their lift and drag: characteristics. These are compared to the 
lift and drag of configurations composed of the same wing and a symmetrically disposed circular conewith 
equal volume as the half -cone.  The comparison is made to investigate whether it is possible to attain better 
lift efficiency by placing the body on one side of the wing. 

For configurations having a body diameter-wing span ratio larger than approximately 0.45,  a disposition 
of a hal f -cone on one side of the delta wing shows a drag reduction at a given lift, and therefore a higher 
value of(CL/CD)max, compared to the corresponding symmetrical  combination. However, the high-wing com-  
bination is preferable to the low-wing, since lower angles of incidence are needed to attain a certain C L. 

If the body diameter-wing span ratio is less than this value, the symmetrical  system appears to be more 
favoutable. 

The lift curve siope - ~ o f  the asymmetrical configurations studied is larger than that of thesymmetr ical  
configurations. 

1. Introduction. 

In order to improve theoretically possible lift and drag characteristics 
of supersonic aircraft various investigations have been made (for example 
see ~I], ~2], E33). 

For the major part these approaches concerned an arrangement of wing 
and body such that a favourable pressure interference effect could be ob- 
tained, to increase lift and to decrease drag. For wing-body combinations 
having wings with sonic or supersonic edges, a disposition with a body 
underneath the wing appeared to be an efficient means of generating lift 
[ 2 3 ,  [ 3 3 .  

Also it is possible to reduce the drag at a given lift by indentations of 
the fuselage at the wing station, as has been investigated by Ferri e.a. 
~2], using the linear theory. 

Any possibility of generating lift has to be considered together with the 
contingent drag that may result from it. 

This finds expression in the lift-drag ratio, L/D. Using the linear 
theory Ferri e.a. E2] showed that in the case of a delta wing with super- 
sonic leading edges the L/D ratio may increase when mounting a suitably 
selected double wedge underneath. The drag of the modified system appeared 
to be lower than that of the delta wing alone at the same lift. In addition, 
mounting the wedge means adding volume. An extension of this idea has 
been investigated, making use of the linear theory, by Reyn and Clarke 
E3], who considered an analogous configuration with a half-cone instead of 
a wedge and who also gave attention to arrowhead wings. In their case 
the wing leading edges were sonic. Reyn and Clarke compared the lift and 
drag characteristics ofvarious configurations, namely a high-wing and a low- 
wing both carrying a half-cone, and a mid-wing with a full cone of the 
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s a m e  v o l u m e  as  the  h a l f - c o n e .  The  m a x i m u m  d r a g  r e d u c t i o n  found in [ 3 ]  
f o r  a h igh  a r r o w h e a d  w i n g - c o n e  c o n f i g u r a t i o n  a p p e a r e d  to be 37% and i-O~/o 
as compared to the low=wing and mid-wing configurations, respectively. 
In the case of the delta wing these percentages were 15% and 2%. The 
results mentioned above may be expected, considering the fact that a body 
underneath the wing will induce a positive pressure on its own surface and 
on the undersurface of the wing. This results in a positive lift. The change 
of the body by bringing the whole volume to one side of the wing however, 
introduces an additional drag which may be considered as payment for the 
lift increase. In the case studied in [2 3 and [3] a favourable effect on the 
L/D ratio of a wing carrying a body underneath was found. 

The question arises, whether such effect also remains present for wing- 
body configurations having subsonic leading edges. Then the overpressure 
at the undersurface of the wing "leaks" around the leading edges, thereby 
weakening the lift effect of the fuselage. 

In the present paper the slender-body theory of Ward [4] is applied to 
wing=body configurations consisting of a delta wing with a half=cone mounted 
centrally underneath or above. The lift and drag characteristics are then 
compared to those of the mid-wing configuration, with a full cone having 
the same volume as the half-cone. An attached flow model is assumed. 
The paper is an abstract of [7], to which is referred to for further details. 

After [7] had been written, the work of Portnoy [5], where the flow 
past a delta wing-half-cone combination with subsonic leading edges was 
investigated using the linear theory, came to the attention of the authors. 
Furthermore Portnoy treated the same problem in the framework of slender- 
body theory in an as yet unpublished paper [6]. 

Since the latter followed a different treatment of the problem then used 
in the present paper, yet obtained identical numerical results regarding 
the lift-drag characteristics, both approaches may serve as independent 
checks on the calculations. Moreover the present paper gives the comparison 
of the various wing-cone configurations. 

2. Statement of the problem. 

A s k e t c h  of  the c o n f i g u r a t i o n  c o n s i s t i n g  of a de l t a  wing and a h a l f - c o n e  
to be s t ud i ed  is g iven  in f i ~ . l ,  w h e r e  a l s o  the b o d y  a x e s  x, y,  z a r e  

0 

z 

Fig. 1: Sketch of the wing-body configuration 
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i n d i c a t e d .  The  wing span  at the b a s e  is 2b and the  r o o t c h o r d  is 1; the  
cone  of r a d i u s  R(1) at  the b a s e ,  has  a s e m i  apex  ang le  of 5. Th i s  c o n -  
f i g u r a t i o n  is  p l a c e d  in a u n i f o r m  s u p e r s o n i c  flow of v e l o c i t y  U. The  v e l o c i t y  
v e c t o r  l i e s  in the  xz p lane  and f o r m s  an ang le  a with the z - a x i s ,  a be ing  
p o s i t i v e  fo r  a p o s i t i v e  r o t a t i o n  about  the  y - a x i s .  A c c o r d i n g  to the s l e n d e r -  
b o d y  t h e o r y  of W a r d  [4] the  p e r t u r b a t i o n  p o t e n t i a l  is g iven  with r e s p e c t  to 
the  wind a x e s  Xw, yw, zw h a v i n g  the  s a m e  o r i g i n  as  the b o d y  a x e s  and 
with Oz w p a r a l l e l  to  the  u n d i s t u r b e d  f low. The  p e r t u r b a t i o n  p o t e n t i a l i s  
found to be g iven  by  

~{xw,Yw;Zw) = g(zw) + ~ ' ( x w , y w ; z w }  {1) 

w h e r e  g(zw) is a g iven  func t ion  of the c r o s s - s e c t i o n a l  a r e a  d i s t r i b u t i o n  
S(Zw) Of the  c o n f i g u r a t i o n ,  and of  the Mach  n u m b e r  M; ~W(Xw, Yw; zw) s a t i s f i e s  
the  L a p l a c e  e q u a t i o n  in the  p lane  Zw = c o n s t a n t  with the  b o u n d a r y  cond i t ion  

3 ~  t Ov w 
' ' ~ U ~ 

Ovw 0z w 
(2) 

on the  b o d y  c o n t o u r ,  w h e r e  v w is the  o u t w a r d  n o r m a l  on the c o n t o u r  in the 
p lane  z w = c o n s t a n t .  

In add i t i on ,  at  i n f in i ty  v'(Xw, yw;Zw) m u s t  b e h a v e  l ike  

U dS(Zw} 
*'(Xw'Yw;Zw) = 2 ~ -  log r w (3) 

d z  w 

w h e r e  r w = ('X2+w y,;.)2.�89 

The  d e t e r m i n a t i o n  of  the flow f ie ld  p a s t  the c o n f i g u r a t i o n  now i n v o l v e s  
the s o l u t i o n  of the  L a p l a c e  equa t ion ,  which  fu l f i l s  the  b o u n d a r y  cond i t ion  
on the body  eq. (2) and the  cond i t ion  at in f in i ty  eq. (3). 

The  p r o b l e m  thus  s t a t e d  wil l  be t r a n s p o s e d  on body  a x e s  and sp l i t  up 
into two p a r t s ,  the b o u n d a r y  c o n d i t i o n s  will  be sp l i t  up a c c o r d i n g l y .  We then 
h a v e  
�9 i the problem due to the flow at zero incidence with the perturbation 

potential ~ (x, y; z); 
II the problem due to the cross-flow at incidence ~ with the perturbation 

potential W~(x, y; z). 
The problems I and II will be solved in the cross-sectional plane z = 

constant, called the ~-plane given in fig. 2, where 

= x + iy  (4) 

P r o b l e m  I (o~ = O) 
In th i s  c a s e  the  body  a x e s  and wind a x e s  c o i n c i d e .  
F o r  the b o u n d a r y  cond i t ion  on the wing we take  

a% 
= 0 

Ox 
5a) 

and on the  b o d y  

7r - -u  d~--E~ for I ~ [ - - ~ ,  0<o<-~ 
Or dz " (5b) 
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w h e r e  0 r e p r e s e n t s  the  p o l a r  ang le .  
At  in f in i ty  we s h a l l  r e q u i r e  

[ U dS(z)log rl = 0 (6) l i ra  ~ " ~ dz 

w h e r e  r = (x2+y2) �89 

Problem II (~ ~ O) 

In th i s  p r o b l e m  we t ake  the  b o u n d a r y  cond i t i ons  on the wing s u r f a c e  

- -  = - Uc~ ( T a )  
ax 

and on the  body  

= - U oL c o s  O, (7b) 
a r  

w h e r e a s  a t  in f in i ty  we t ake  

�9 ~ = 0 (8) 

Superposition of the perturbation potentials ~'0 and ~, satisfying the stated 
boundary conditions, yields the solution of the potential ~' (x w, Yw ; Zw ) 
for the boundary conditions eqs. (2) and (3h 

3. Conformal transformation of the ~-plane.. 

To s o l v e  the  s t a t e d  p r o b l e m s ,  the  ~ - p l a n e  (fig.  2) is m a p p e d  onto the  

Y 

b] 
- oo-.--- F I E 

IllzlilIlI/llzzz 

C 

I I I I I I I I I I I  I I  I I  I 
~ X  

Fig. 2: The l-plane 

- plane. 
Since the configuration is symmetrical with respect to the xz-plane, only 

one half will be considered. 
First we transform to a H-plane (fig. 3) by 

= log (9) 
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- o o . - - - e  i~ I F - - - ~  + ~  

Qo-.4-----E | nl,en b +i 11:) 

Fig. a: The 1~-plane 

T h e  c o n t o u r  in t he  ~ - p l a n e  is  a p o l y g o n ,  wh ich  m a y  be  t r a n s f o r m e d  b y a  
a S c h w a r z - C h r i s t o f f e l  t r a n s f o r m a t i o n  on to  the  r e a l  a x i s  of t he  T - p l a n e ,  s e e  
f ig .  4 C h o o s i n g  B in "r = ~, C in ~- = 1, D in 7 = k  and  E in ~" = 0 we 

,77777777 
! 

Fig. 4: The T - plane 

o b t a i n  wi th  t h e  S c h w a r z - C h r i s t o f f e l  e q u a t i o n  a e o n f o r m a l  m a p p i n g  of the  
i n n e r  r e g i o n  of  t he  c o n t o u r  in the  ~ / -p lane  on to  the  u p p e r  h a l f  T - p l a n e  [ 7 ] ,  

T h e  t r a n s f o r m a t i o n  f o r m u l a  is  g i v e n  b y  

log r + log L ~ J 5 iog(~-1) (10) 

whereas for ~ fol lows k = �89189 
F rom eq. (10) the equation mapping the ~-plane onto the m-plane is found 

to be 

w h e r e  ~ is  g i v e n  b y  

b [ (/3"�89189189 + (1-�89189189 2 [(~8"�89 ]3�89189 "{~c,-~,'~}' l  
-- [�89 �89 (12) 

Eq .  ( 1 2 ) g i v e s  t he  r e l a t i o n  b e t w e e n  the  b o d y  d i a m e t e r - w i n g  s p a n  r a t i o  and  
ft. A s  a c h e c k ,  eq.  (11) m a y  be  a p p l i e d  to  the  c a s e  of the  wing  a l o n e .  T h e n  
in t he  l i m i t  t h e  p o i n t s  B and  C of f ig .  2 c o i n c i d e  in ~ = 0, and  eq.  (11) 
p a s s e s  in to  
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�89 

The behaviour at infinity of eq. (Ii) is of importance in the solution of 
boundary value-problem I. For ~--~r eq. (ii) becomes 

i 
4(fi ~-I ) 

N : ~ 3 ~ "  (14) 
(p -1)2  

4. Solution of problem I (a = 0). 

F i r s t l y  we s a t i s f y  t he  b o u n d a r y  c o n d i t i o n s  eq.  (5a) and  eq.  (5b) b y  p l a c i n g  
a s o u r c e  d i s t r i b u t i o n  on the  c o n t o u r  of the  b o d y .  F i g .  5 s h o w s  a s k e t c h  of 

F , ~ - - -  i E 
I I I I I I I I I I I I I i i  / /  X 

I / I / i / i / I / / / / / / / -  

--PLANE 

v . . , - -  E i - x, 
1 1 1 1 1 1 1 1 I I I I I I I I I I I I I I I 7 1 1 1 1 1 1 i 1 1 1 1 1 1 1 1  - 

I:-PLANE 

Fig. 5: Flow in a cross-section z=c=const. Problem I (c~=O) 

the flow pattern in the ~-plane and the corresponding ~--plane. The body 
contour corresponds to 1 < x' <fi, y' = 0 in the v-plane, where 

T = x' + iy' (15) 

If 

Zo = Vo(X'" y') + 'i@ o (x', y') = ~Po (x, y) + i@ o (x, y) (15a) 

is the complex potential, we may write 
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0~  o O ~ o  3 x '  O~o  Oy' 
- + - -  (16) 

Or 0x' Or ay' Or 

where r, 0 are polar coordinates in the {-plane (see fig. 5). 
ax' ay'  d r [ 

W i t h  ~7 = 0 , 3 r  = ~ ,  and  e qs  (5b) and  (11) t h o r (  ~ f o l l o w s  f r o m  eq .  (1~) 

f o r  t h e  b o u n d a r y  c o n d i t i o n s  on the  b o d y  in t h e  r - p l a n e  
l 

X I - 

a~~ (x',0) = U R  
r 

dR 
d-'-7 , ~ ( lVa)  

3y '  x ' ( x '  - 1) ~ ( t~-x '  )-" 

Elsewhere on the real x'-axis is 

c3'~ 0 

Oy' 
- -  ( x ' , O )  = 0 ( 1 7 b )  

The 
strength 

l x' -~fi~ 
U dR 
~-Rd--  ~- 

x' (x'  - 1 )�89 03 - x' )�89 
on  t he  r e a l  a x i s  o f  t he  r - p l a n e  f o r  1 < x '  < ~ .  

T h e  p o t e n t i a l  in t he  7 - p l a n e  t h e n  b e c o m e s  

= - - l o g  
% ( x ' ,  y ' )  rr d-z ~ (~_ 1)~ (13_~)�89 

1 
and the velocities 

~ -�89 
3~0 (x',y' U dR J , Ix' -~ I d~ 
3x'  7 R ~ ~ ( ~ - l ) � 8 9  ( x ' - ~ ) 2 + y  '2 

I 

and  

conditions (17a) and (17b) are satisfied by a source distribution of 

~ i-2 y, 
U dR -~f i  

=-~ R a-~- ~(~-i)I(~-----~;)�89 (~,_~,)2+y,2 

(17o) 

c%P 0 
- -  (x', y' 
3y '  

(18) 

(19) 

1 

F ] dR 1 I (x ' ,0 )  = - U R  ~-~, ~+~ ; 
ax' L(~-x')'(1-x')~ 

(# -~, )~ + {p (i - x,)}i-] 
�89 log 

~�89 "~ 
(22) 

(22) 

r ( ~ - x ' ) ~  + ( 1 - x ' )  -i 
dR |log - ~0(x', 0) = 2 UR ~-~ k 2 

given. We then find 
for x' < 1 

For the calculation of the lift and drag with the slender-body theory we 
only need the potential and the normal velocity on the contour of the con- 
figuration. The evaluation of the integrals (18) and (19) has been carried 
out in detail in ET]. In the present paper only the final results will be 

d~ (2O) 
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for 1 < x '  <fi  

dR Elog(~-l)�89189 ) ' logx'] ~o(X',0) = UR ~ 4 " ~ " (23) 

8~0 dR 1 
(x',0) = -�89 UR d--z- x --i; 

8x' 
(24) 

and for x' ~ 

dR L r l ~  -fi)�89 +(x ' - l ) �89  
~o(X', 0) = 2 UR ~-- 2 

[ ' J 
dR 1 x' - � 8 9  

O~t'o (x' ,  O) = UR d--z x' " - ~ "  ~ " �89 
0x' ( x ' -  1)~(x -~)~ 

1 log 1 t- t 
~ +  1 

(26) 

So far the potential and the velocities have been determined using the 
boundary conditions on the configuration only. 

Now we will check whether the condition at infinity given by eq. (6) is 
satisfied. 

The behaviour at infinity of the potential may be found from eq. (21) 
for x'< 1 or from eq. (25) for x'>~. Using eq. (14) we find from eq. (21) 
for x'--.-oo from eq. (25) for x'---+ 

~Oo(X,y ) = U R dRI 4(fi�89 l o g x - l o g  (271 

If this  r e s u l t  is c o m p a r e d  with eq~ (6) a r e l a t ion  be tween  ~0(x,y) and 
~'o(X, y) is obtained which is given by 

dR 4(~�89 - 1 ) R  
~,o(.X, y; z) -- "o (x, y; z) + u R ~ log (28) 

(~-1)~ 
The additional term dependent on z only does not alter the boundary con- 
dition on the contour of the configuration. 

5. Solution of problem II (~ /: 0). 

In o r d e r  to solve this  p r o b l e m  we add a un i fo rm c r o s s - f l o w  with ve loc i ty  
Ua pa ra l l e l  to the x -ax i s ,  by in t roduc ing  the funct ion ~a (x ,y )  def ined by 

~a(x, y) = U~ x + ~(x, y) (29) 

The boundary conditions given in eqs. (7a), (Tb)and (8)are then trans- 
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f o r m e d  to  

195 

ax 
- 0 (30a)  

on t he  w i n g  s u r f a c e ,  a n d  

a~ 
- 0 

8 r  
(30b) 

on the body. 
At infinity we have 

(~c~: U a x  (31) 

B y  t r a n s f o r m i n g  t h e  p r o b l e m  t o  t he  r - p l a n e ,  t he  b o u n d a r y  c o n d i t i o n s  a r e  
e a s i l y  s e e n  t o  be  s a t i s f i e d  b y  a u n i f o r m  f low p a r a l l e l  t o  t h e  x ' - a x i s .  A 
s k e t c h  o f  t h e  f low f i e l d  in b o t h  p l a n e s  is  g i v e n  in  f ig .  6. 

F~-- - -~- -d E " ~  ~o - <--,-A 
/ / / / / / / / ' / / / /  ' / ' ~ / / / / / / / / / / / / / / 1 ~  X 

~ - P L A N E  

q 
v 

v' q, 

r 

IP, 

" a ( . ) ~ , . . b  F -.,,,-- iD({w~)  ,C(1) , . , ,  
/ / / / / / / / / / / / /  , z / / / / / / / / , / / / / / / / , / / / / - / / / , ~  ^ 

12 _ ,PLANE 

Fig. 6: Flow in a cross-section z,~:c >con~[. problem II(c~O) 

Let the Complex potential be given by 

Za('r) " Oct(xV,y ' )  + i ~ ( x ' , y  v) = a ' r  ( a > O )  

then the conjugate velocity in the ~-plane is found to be given by 
I 

d~C~'~ d~.oC','l ~,,. "C~l{ ' ,C~)- ' -? {",'(~1-~} ~ 

(32) 

(33) 
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T h e  v a l u e  of a is  found f r o m  the cond i t i on  at  i n f i n i t y  eq.  
eq.  (14). T h e n  fo l l ows  

~�89 - 1 

a = 4RU~-- 
(~- 1)~/~ 

(31) and  u s i n g  

(34) 

The eqs. (32), (33) and (34) enable us to find the velocity-components on 
the contour of the configuration. This is done in L7J. For the calculation of 
the aerodynamic forces it suffices to know the real part ~ of the complex 
potential Za on the contour. The complex potential in the "r-plane follows 
from eqs. (32) and (34), giving 

#�89 - 1 

Z~(~) = 4RUc~ a r  (35) 
(~ - 1)~ 

H e n c e ,  on the  r e a l  a x i s  of  the  r - p l a n e  ~ ( x ' , y ' )  b e c o m e s  
s 

~ '  -1  
 olx',0)= (36) 

6. The  a e r o d y ~ m m i c  ] b r c e s .  

The solutions of problems I and II will now be Used to calculate lift and 
drag of the delta wing-half-cone combination';:. Lift and drag will be determined 
for each of the two problems sepaPatel,y, tNe total iift and drag then follow 
by  s u p e r p o s i t i o n .  

A c c o r d i n g  to  W a r d  [4] t he  l a t e r a l  f o r c e  on  the  c o m b i n a t i o n  is  g i v e n  by  

� 8 9  - u zw (3v) 
C 

w h e r e  Fx" w 'Fyw a r e  the  c o m p o n e n t s  of the  f o r c e  in Xw, Y w d i r e c t i o n ,  

r e s p e c t i v e l y  and  p is  the  d e n s i t y  in the  u n d i s t u r b e d  f low (�89 2 d e n o t e s  the  
d y n a m i c  p r e s s u r e ) .  . . . .  

T h e  c o n t o u r  i n t e g r a l  h a s  to~.be t a k e n  a r o u n d  the  c o n t o u r  C a t  the  b a s e  zw 
= 1. In the  p r e s e n t  c a s e  F v = :0 and  the  c o m p o n e n t  Fx~ ~ r e p r e s e n t s  the  

l i f t  f o r c e  L. 
If  we c o n s i d e r  f { r s t l y  t h e  c a s e  w h e r e  a = 0 ( t h e n  b o d y  a x e s  and  wind a x e s  

c o i n c i d e ) ,  we o b t a i n  b y  s u b s t i t u t i o n  of eq. (28), 

' 7 r / 2  ' b b 

La~~ 4 [ ] ~ ((r162 dy] (38) �89 2 - U  t an  5 (~0)BC c o s 0 d 0 +  --(W0)cD dy - z=l 
0 tan6 0 

.... dR w h e r e  5 i s  the  s e m i - a p e x  a n g l e  of the  cone  ( fo r  z = 1 is  ~zz = R = t an  5). 

O n t h e  cone  BC the  p o t e n t i a l  (~0)BC is  g i v e n  by  eq. ( 2 3 ) a n d  f r o m  eq.  (11) 
the  r e l a t i o n  b e t w e e n  0 and x'  is  found to be  

i ( x '  - i )  �89 r- 
cos0- - - -  

I 

(~ -1 )~  x ,�89 , 

It may be remarked,  that tlle solutions of proble w.~ I and II may also be used to ca lcu la te  dm lift and drag of wing -body 

comb inations with curved leading edges, but having a wing span -body diameter  ratio not vary ing in the flow direct ion. 
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On the wing CD and DE the potent ials  (~0)CD,  (~0)DE follow from eq. (21), 
so that the las t  two in tegra l s  of eq. (38) may be evaluated using eq. (11). 

Next the lift due to an angle of inc icence  oe may be found  in the same 
way b y  subst i tut ing <0c~ f rom eqs. (29) and (36) in eq. (37). We may  then 
der ive  the lift curve slope 

~/2 b 

1 da aU tan5 C c o s 0 d 0  + (~}a)cDdY 
g PU 2 

b 0 tan8 

dy - ~ i40) 
0 

The slender-body expression for the wave drag at zero incidence of the 
configuration is found from th e equation for a general body with length 1 
[4],  -'thus giving 

Da= 0 
�89 u 2 

1 1 

1 
- 5 f s,,(z) s,,(t)log 

0 0 
(M2-1) �89 

1 
- l~ 

2 

1 

z - t l  dzdt+ls '(1)~r f S"(z)log(1-z)dz 

0 
1 

[] 1 U2 ~ ~ ds (411 
c z = l  

where s is the distance along the contour. 
Evaluating the first two integrals in eq. (41), and making use ofeqs. 

(Sb) and (28), yields the wave drag for the configuration at zero incidence 
3_ 

Da=~ - 7r~ tan40 I (~-1)2 -�89 
1 u 2 l~189 (L~ �89 ~P 

2 tan26 _~/2 

I f  (~~ d01 (42) 
U 0 z=l 

The integral in eq. (42) may be evaluated using eq. (23)for (~0)Bc and 
eq. (39) to give 

I (~-1)�89 (/3�89 ] Da=0 - 7r Lan46 log - • (43) 
1 U 2 2 1 P 8/3(/3 �89 - 1 ) ( M  2 - 1): tan 6 

1 2 Let CL = L/~PU A, C = D/�89 PU2A, where A is the wing area ,  be the 
lift and drag coefficient ,  r espec t ive ly ,  then accord ing  to the s l ende r -body  
theory  th following re la t ion  may be found [4]:  

CD = (CD)cL=0 + 1 { a _ ( a ) C L = O }  CL (44) 

or, since C L is a linear function of a, for the polar curve is obtained 

CD = (CD)a=0 + CL -(eL 
- -  Ct=0 

(45) 

7, Comparison ~  the various configurations. 

The high-wing and low-wing configuration may be compared to the con- 
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figuration having a delta wing with a symmetrically disposed full one. A 
comparison will be made of the aerodynamic forces of configurations with 
equal body volume and equal wing area. Then the following relation exists 
between apex angle of the half-cone and that of the full cone 

tan2T = �89 tan25 (46) 

where T is the semi apex angle of the full cone. 
The lift and drag of the symmetrical configuration is obtained from [4]. 

Substituting eq. (46) there follows for the lift curve slope of the mid-wing 
combination 

dCL _ 27r tan5 b _�89 ta~5 1 a~__._~5 1 

and for the wave d rag  coeff ic ient  at ze ro  inc idence  
3 

7r t a n  5 22 
(CD)c(=0 = g tan35 ~ _ l ) { t an5  -�89 

(47) 

(48) 

The expression for the polar curve is 

1 2 
CD = (CD)~=0 + 2d'CL " CL 

a-d 
(49) 

F o r  t h e  c o m p a r i s o n  the m a x i m u m  value of CL/CD is of i n t e r e s t .  F r o m  
eq. (45) t he r e  follows 

.I 

~./dCL~ z 

(el,/CD)ma x = 2~d---~] (50) 

(CD)~--~ ~dCL -o 
Zd--g- " 

The value of CL and CD at which (CL/CD)ma x occurs are called the 

optimum values, (CL)opt. and (CD)oF" 

Eq. (45) shows that the polar curves of the low-wing and the high-wing 
systems coincide. In order to obtain a certain value of C L however, the 
incidence needed for a high-wing combination is much lower than for the 
corresponding lo,.~-wing -~ombination, Therefore the high-~ving is more 
interesting. A qualitative sketch of the polar curves of the asymmetrical 
and symmetrical configurations is shown in fig. 7. The value of C L whereby 
both systems have equal lift and drag (the intersection point of the polar 
cu rves )  is cnl led the c r i t i c a l  value,  (CL)cm . .  This value follows by equating 

eqs. (45) and (49). 
Since the effect of Maeh number is equally present in (C D)~=0 of both 

configurations, (CL)cri~. is independent of the Mach number. 

8, Nu~Ticrical l 'csulls.  

The computations of el, and CD were carried out on the TR-4 computer 
of the Technological University Delft. 

The results are illustrated in figs 8 to ]2. 
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C L 

( C L )opt 
~ ~mCg 

( C L )opt. s,c. 

(CL) .crit 

0 

0 

asyrn.configuration 

.- symm.configuration 

C D 

Fig. 7: Diagram of polar curves 

F ig ,  8 s h o w s  the  va lue  of C L of the h i g h - w i n g  c o m b i n a t i o n  at z e r o  i n -  
c i d e n c e .  A l s o  shown is (CL)cm.  ; it is  s e e n  that  the p o l a r  c u r v e s  have  

an i n t e r s e c t i o n  poin t  if ( t m ~ 5 / b ) <  0 .5 ,  thus fo r  bod.v d i a m e t e r s  which a r e  
r e l a t i v e l y  s m a l l  with r e s p e c t  to the wing span .  F o r  ( t a n S / b )  > 0 . 5 ,  so  fo r  
t h i c k e r  bod i e s ,  the a s y m m e t r i c a l  c o n f i g u r a t i o n  shows  at all \ a l u e  of (-:L a 
l o w e r  va lue  of CD compared with the symmetrical s y s t e m .  

dC L It a p p e a r s  tha t  ~ o f  the a s y m m e t r i c a l  c o n f i g u r a t i o n  is h i g h e r  than tha t  

of  the c o r r e s p o n d i n g  s y m m e t r i c a l  one.  The  r a t i o  of the two is g iven  as  
a func t ion  of the body  d i a m e t e r - w i n g  span  r a t i o  in fig. 9. 

F ig ,  10 and 1i show C[,/CI,~ as  a func t ion  of C L fo r  v a r i o u s  a p e x a n g l e s  
of cone and de l ta  wing and fo r  M = 1 . 2  and 2 . 0 .  

At  s m a l l  v a l u e s  of  m = b(M ~ - 1) ~ the r a t i o  of the s e m i  apex  ang le  of  
the wing to the M a t h  ang le  is s m a l l .  Then  the  s l e n d e r - b o d y  t h e o r y  is m o s t  
a c c u r a t e .  At v a l u e s  o f ( t a n S / b )  be low 0 .47  the CL/CD of the s y m m e t r i c a l  
s y s t e m  is h i g h e r  titan t h a t  of the c o r r e s p o n d i n g  a s y m m e t r i c a l  s y s t e m ,  
w h e r e a s  the o p p o s i t e  o c c u r s  at  v a l u e s  of ( t a n S / b )  above  0 . 4 7 .  Th i s  m e a n s  
that  if the cone ang le  is l a r g e  c o m p a r e d  to the de l ta  wing apex  ang le  the 
i n f l uence  of p l a c i n g  the  body  on the l o w e r  s ide  of  the wing is f a v o u r a b l e .  
The e f fec t  of the Mach n u m b e r  on the r e s u l t s  is v e r y  s m a l l ,  as  m a y  be 
e x p e c t e d ,  s i n c e  in the s l e n d e r - b o d y  t h e o r y  o n l y  C u c o n t a i n s  a weak  d e -  
p e n d e n c e  on the Mach n u m b e r .  

R a t h e r  then  go ing  into d e t a i l s  abou t  the  v a l u e s  of  C L / C D  at  a r b i t r a r y  
v a l u e s  of  C L , it m i g h t  be i n t e r e s t i n g  to c o m p a r e  the  m a x i m u m  Values  of 
C L /CD �9 It m u s t  be noted  h o w e v e r ,  tha t  (CL /CI) )max of a l l  t y p e s  of c o n f i g u r a t i o n s  
is a t t a i n e d  at d i f f e r e n t  v a l u e s  of  C L . I f  6 is t aken  s m a l l e r ,  (C L/CD)ma x 

a p p e a r s  at  l o w e r  v a l u e s  of CL (figs 10, 11). A l s o  ev iden t  in f igs .  10 and 
11 is the  f a i r l y  f lat  m a x i m u m  in the  c u r v e s  at  l a r g e  v a l u e s  of  5 as  c o m -  
p a r e d  to  the  v e r y  s m a l l  r e g i o n  of C L w h e r e  the  h i g h e s t  v a l u e s  of CL / C  D 
a r e  r e a c h e d  to s m a l l  cone  a n g l e s .  In the e a s e  of the h i g h - w i n g  s y s t e m  
(CL /Cm)ma x a p p e a r s  at  an  a n g l e  of i n c i d e n c e  c l o s e  to z e r o .  
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Fig, 9: Comparison between lift curve slopes of the symm, and asymm, configurations 
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Fig. 12: Comparison between ~DD ] of the symm. and asymm, configurations 
; max 

Fig. 12 shows the ratio of C L /C D )max of the asymmetrical configuration 

to that of the symmetrical configuration as a function of (tan 8/b). It may 
be seen that the value of (tan 6/b) of approximately 0.45 is of importance 
to decide which configuration provides the best (C L /CD)max. 

The effect of Mach number on (C L /CD)l.na x at a constant value of 6 is 

shown in this figure to be weak. 

9 D i s c u s s i o n  

It is well-known that the numerical accuracy of the slender bodytheory 
is not very great, except possibly for small cone angles and low super- 
sonic Mach numbers. However, other methods to achieve quantitative results 
for the configurations studied in this paper would be considerably more 
complicated. Moreover a comparison of the various configurations on the 
basis of slender body theory would possibly still show the trend in their 
relative behaviour. 

In the present investigation the effect of base drag, skin friction and 
flow separation has been ignored. For small cone angles and equal base 
area the base drag might be expected to be roughly the same for the con- 
figurations studied, so that in this respect a comparative investigation would 
still lead to reasonable conclusions. 

Since, especially for small cone angles, the wetted surface for the wing- 
cone configurations studied is almost equal, the effect of skin friction would 
probably cause primarily a unifol'm translation of the polar curves to 
higher values of C D . The critical and optimum values do not change due 
to such a shift, and the drag reductions remain unchanged. The relative 
drag reductions will decrease however, especially for lower values of C D, 
and therefore for lower values of CL. It is obvious that the influence of 
skin friction on the values of CL /CD is very 'large. 

L e a d i n g  e d g e  s e p a r a t i o n  w i l l  c e r t a i n l y  o c c u r  a t  h i g h e r  a n g l e s  of ~ .  In  
t h i s  r e s p e c t  t h e  h i g h - w i n g  c o m b i n a t i o n  i s  in  f a v o u r  on  t h e  c o r r e s p o n d i n g  
l o w -  a n d  m i d - w i n g  c o m b i n a t i o n s ,  s i n e  t h e  s a m e  C L i s  r e a c h e d  at  
v a l u e s  of a .  
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